Inotersen to Treat Polyneuropathy Associated with Hereditary Transthyretin (hATTR) Amyloidosis

Background
Amyloidosis is a group of diseases with the common pathophysiology of protein misfolding and aberrant deposition in tissue. There are both acquired and hereditary forms of this disease, and this review focuses on the latter hereditary transthyretin-mediated (hATTR). hATTR affects about 50,000 individuals globally and mostly appears as one of three syndromes - cardiac, polyneuropathy, and oculoleptomeningeal. Polyneuropathy is the most common form, and there is usually some overlap in individual patients.
Results
Recently, novel therapeutic options emerged in the form of groundbreaking drugs, Patisiran and Inotersen, small interfering RNA molecules that target TTR and reduce the production of this protein. By targeting TTR mRNA transcripts, Inotersen decreases protein translation and production, reducing the deposition of misfolded proteins. It was shown to be both effective and safe for use and specifically formulated to concentrate in the liver – where protein production takes place.
Conclusion
hATTR is a rare, progressive, and debilitating disease. Its most common presentation is that of polyneuropathy, and it carries a very poor prognosis and a natural history conveying a median survival of < 12 years. Novel therapeutic options are groundbreaking by providing disease-modifying specific, targeted therapies against TTR production and deposition. The use of RNA interference (RNAi) opens the door to the treatment of hereditary diseases by targeting them at the genetic level.
1. Gertz MA. Hereditary ATTR amyloidosis: burden of illness and diagnostic challenges. The American journal of managed care. 2017;23:S107-S112.
2. Reixach N, Deechongkit S, Jiang X, Kelly JW, Buxbaum JN. Tissue damage in the amyloidoses: Transthyretin monomers and nonnative oligomers are the major cytotoxic species in tissue culture. Proc Natl Acad Sci USA. 2004;101(9):2817-2822. doi:10.1073/pnas.0400062101
3. Shin SC, Robinson-Papp J. Amyloid neuropathies. Mt Sinai J Med. 2012;79(6):733-748. doi:10.1002/msj.21352
4. Hanna M. Novel drugs targeting transthyretin amyloidosis. Curr Heart Fail Rep. 2014;11(1):50-57. doi:10.1007/s11897-013-0182-4
5. Hawkins PN, Ando Y, Dispenzeri A, Gonzalez-Duarte A, Adams D, Suhr OB. Evolving landscape in the management of transthyretin amyloidosis. Annals of Medicine. 2015;47(8):625-638. doi:10.3109/07853890.2015.1068949
6. Stewart M, Loftus J, Lenderking WR, et al. Characterizing Disease Burden in an Ultra-Rare Disease in the United States: Transthyretin (TTR) Amyloidosis Patients & Caregivers. Value in Health. 2013;16(7):A386. doi:10.1016/j.jval.2013.08.365
7. Sekijima Y. Transthyretin (ATTR) amyloidosis: Clinical spectrum, molecular pathogenesis and disease-modifying treatments. J Neurol Neurosurg Psychiatry. 2015;86(9):1036-1043. doi:10.1136/jnnp-2014-308724
8. Coelho T, Maurer MS, Suhr OB. THAOS - The Transthyretin Amyloidosis Outcomes Survey: initial report on clinical manifestations in patients with hereditary and wild-type transthyretin amyloidosis. Current Medical Research and Opinion. 2013;29(1):63-76. doi:10.1185/03007995.2012.754348
9. Liz MA, Mar FM, Franquinho F, Sousa MM. Aboard transthyretin: From transport to cleavage. IUBMB Life. Published online 2010. doi:10.1002/iub.340
10. Koike H, Ikeda S, Takahashi M, et al. Schwann cell and endothelial cell damage in transthyretin familial amyloid polyneuropathy. Neurology. 2016;87(21):2220-2229. doi:10.1212/wnl.0000000000003362
11. Coelho T, Maia LF, Silva AM da, et al. Tafamidis for transthyretin familial amyloid polyneuropathy: a randomized, controlled trial. Neurology. 2012;79(8):785-792. doi:10.1212/wnl.0b013e31826611
12. Berk JL, Suhr OB, Obici L, et al. Repurposing diflunisal for familial amyloid polyneuropathy: A randomized clinical trial. JAMA. 2013;310(24):2658-2667. doi:10.1001/jama.2013.283815
13. Coelho T, Vinik A, Vinik EJ, Tripp T, Packman J, Grogan DR. Clinical measures in transthyretin familial amyloid polyneuropathy. Muscle Nerve. 2017;55(3):323-332. doi:10.1002/mus.25257
14. Mohty D, Damy T, Cosnay P, et al. Cardiac amyloidosis: Updates in diagnosis and management. Archives of Cardiovascular Diseases. 2013;106(10):528-540. doi:10.1016/j.acvd.2013.06.051
15. Rapezzi C, Longhi S, Milandri A, et al. Cardiac involvement in hereditary-transthyretin related amyloidosis. Amyloid. 2012;19(sup1):16-21. doi:10.3109/13506129.2012.673185
16. Benson MD, Dasgupta NR, Monia BP. Inotersen (transthyretin-specific antisense oligonucleotide) for treatment of transthyretin amyloidosis. Neurodegener Dis Manag. 2019;9(1):25-30. doi:10.2217/nmt-2018-0037
17. Gertz MA, Scheinberg M, Waddington-Cruz M, et al. Inotersen for the treatment of adults with polyneuropathy caused by hereditary transthyretin-mediated amyloidosis. Expert Review of Clinical Pharmacology. 2019;12(8):701-711. doi:10.1080/17512433.2019.1635008
18. Mathew V, Wang AK. Inotersen: new promise for the treatment of hereditary transthyretin amyloidosis. Drug Design, Development and Therapy. 2019;13:1515-1525. doi:10.2147/dddt.s162913
19. Gertz MA, Scheinberg M, Waddington-Cruz M, et al. Inotersen for the treatment of adults with polyneuropathy caused by hereditary transthyretin-mediated amyloidosis. Expert Review of Clinical Pharmacology. 2019;12(8):701-711. doi:10.1080/17512433.2019.1635008
20. Benson MD, Waddington-Cruz M, Berk JL, et al. Inotersen Treatment for Patients with Hereditary Transthyretin Amyloidosis. N Engl J Med. 2018;379(1):22-31. doi:10.1056/nejmoa1716793
21. Akcea Therapeutics UK Ltd. Prescribing Information for TEGSEDI; 2018.
22. Akcea Therapeutics UK Ltd. Tegsedi 284 mg solution for injection in pre-filled syringe - Summary of Product Characteristics (SmPC) - (emc). Electronic Medicines Compendium; 2019.
23. Benson MD, Dasgupta NR, Rissing SM, Smith J, Feigenbaum H. Safety and efficacy of a TTR specific antisense oligonucleotide in patients with transthyretin amyloid cardiomyopathy. Amyloid. 2017;24(4):217-223. doi:10.1080/13506129.2017.1374946
24. Crooke ST, Witztum JL, Bennett CF, Baker BF. RNA-Targeted Therapeutics. Cell Metabolism. 2018;27(4):714-739. doi:10.1016/j.cmet.2018.03.004
25. Stephenson ML, Zamecnik PC. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc Natl Acad Sci USA. 1978;75(1):285-288. doi:10.1073/pnas.75.1.285
26. Bennett CF, Swayze EE. RNA Targeting Therapeutics: Molecular Mechanisms of Antisense Oligonucleotides as a Therapeutic Platform. Annu Rev Pharmacol Toxicol. 2010;50(1):259-293. doi:10.1146/annurev.pharmtox.010909.105654
27. Levin AA, Yu RZ, Geary RS. Basic principles of the pharmacokinetics of antisense oligonucleotide drugs. In: Antisense Drug Technology: Principles, Strategies, and Applications. 2nd ed. CRC Press; 2007:183-215. doi:10.1201/9780849387951.ch7
28. Geary RS, Yu RZ, Siwkowski A, Levin AA. Pharmacokinetic/Pharmacodynamic Properties of Phosphorothioate 2'-O-(2-Methoxyethyl)-Modified Antisense Oligonucleotides in Animals and Man. In: Antisense Drug Technology: Principles, Strategies, and Applications, Second Edition. 2nd ed. CRC Press; 2008:305-326.
29. Bennett CF, Swayze EE. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol. 2010;50(1):259-293. doi:10.1146/annurev.pharmtox.010909.105654
30. Lima W, Wu H, Crooke ST. The RNase H mechanism. In: Antisense Drug Technology: Principles, Strategies, and Applications, Second Edition. 2nd ed. CRC Press; 2008:47-74.
31. Gales L. Tegsedi (Inotersen): An antisense oligonucleotide approved for the treatment of adult patients with hereditary transthyretin amyloidosis. Pharmaceuticals. 2019;12(2):78. doi:10.3390/ph12020078
32. Bennett CF. Therapeutic Antisense Oligonucleotides Are Coming of Age. Annu Rev Med. 2019;70(1):307-321. doi:10.1146/annurev-med-041217-010829
33. Ackermann EJ, Guo S, Benson MD, et al. Suppressing transthyretin production in mice, monkeys and humans using 2nd-Generation antisense oligonucleotides. Amyloid. 2016;23(3):148-157. doi:10.1080/13506129.2016.1191458
34. Benson MD, Dasgupta NR, Monia BP. Inotersen (transthyretin-specific antisense oligonucleotide) for treatment of transthyretin amyloidosis. Neurodegenerative Disease Management. 2019;9(1):25-30. doi:10.2217/nmt-2018-0037
35. Ruberg FL, Berk JL. Transthyretin (TTR) Cardiac Amyloidosis. Circulation. 2012;126(10):1286-1300. doi:10.1161/circulationaha.111.078915
36. Koike H, Tanaka F, Hashimoto R, et al. Natural history of transthyretin Val30Met familial amyloid polyneuropathy: Analysis of late-onset cases from non-endemic areas. J Neurol Neurosurg Psychiatry. 2012;83(2):152-158. doi:10.1136/jnnp-2011-301299
37. Mariani LL, Lozeron P, Théaudin M, et al. Genotype-phenotype correlation and course of transthyretin familial amyloid polyneuropathies in France. Ann Neurol. 2015;78(6):901-916. doi:10.1002/ana.24519
38. Adams D, Coelho T, Obici L, et al. Rapid progression of familial amyloidotic polyneuropathy: A multinational natural history study. Neurology. 2015;85(8):675-682. doi:10.1212/wnl.0000000000001870
39. Ruberg FL, Maurer MS, Judge DP, et al. Prospective evaluation of the morbidity and mortality of wild-type and V122I mutant transthyretin amyloid cardiomyopathy: The Transthyretin Amyloidosis Cardiac Study (TRACS). American Heart Journal. 2012;164(2):222-228.e1. doi:10.1016/j.ahj.2012.04.015
40. Castano A, Drachman BM, Judge D, Maurer MS. Natural history and therapy of TTR-cardiac amyloidosis: emerging disease-modifying therapies from organ transplantation to stabilizer and silencer drugs. Heart Fail Rev. 2015;20(2):163-178. doi:10.1007/s10741-014-9462-7
41. Liepnieks JJ, Zhang LQ, Benson MD. Progression of transthyretin amyloid neuropathy after liver transplantation. Neurology. 2010;75(4):324-327. doi:10.1212/wnl.0b013e3181ea15d4
42. Adams D, Buades J, Suhr O, Obici L, Coelho T. Preliminary assessment of neuropathy progression in patients with hereditary ATTR amyloidosis after orthotopic liver transplantation (OLT). Orphanet Journal of Rare Diseases. 2015;10(Suppl 1):P19. doi:10.1186/1750-1172-10-s1-p19
43. Coelho T, Maia LF, da Silva AM, et al. Long-term effects of tafamidis for the treatment of transthyretin familial amyloid polyneuropathy. J Neurol. 2013;260(11):2802-2814. doi:10.1007/s00415-013-7051-7
44. Cortese A, Vita G, Luigetti M, et al. Monitoring effectiveness and safety of Tafamidis in transthyretin amyloidosis in Italy: a longitudinal multicenter study in a non-endemic area. I Neurol. 2016;263(5):916-924. doi:10.1007/s00415-016-8064-9
45. Plante-Bordeneuve V. Transthyretin familial amyloid polyneuropathy: an update. J Neurol. 2018;265(4):976-983. doi:10.1007/s00415-017-8708-4
46. Lozeron P, Théaudin M, Mincheva Z, et al. Effect on disability and safety of Tafamidis in late onset of Met30 transthyretin familial amyloid polyneuropathy. Eur J Neurol. 2013;20(12):1539-1545. doi:10.1111/ene.12225
47. Ando Y, Coelho T, Berk JL, et al. Guideline of transthyretin-related hereditary amyloidosis for clinicians. Orphanet Journal of Rare Diseases. 2013;8(1):31. doi:10.1186/1750-1172-8-31
48. Coelho T, Adams D, Silva A, et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N Engl J Med. 2013;369(9):819-829. doi:10.1056/nejmoa1208760
49. Sewell KL, Geary RS, Baker BF, et al. Phase I trial of ISIS 104838, a 2'-methoxyethyl modified antisense oligonucleotide targeting tumor necrosis factor-α. J Pharmacol Exp Ther. 2002;303(3):1334-1343. doi:10.1124/ipet.102.036749
50. van Bennekum AM, Wei S, Gamble MV, et al. Biochemical basis for depressed serum retinol levels in transthyretin-deficient mice. Journal of Biological Chemistry. 2001;276(2):1107-1113. doi:10.1074/jbc.m008091200
51. Episkopou V, Maeda S, Nishiguchi S, et al. Disruption of the transthyretin gene results in mice with depressed levels of plasma retinol and thyroid hormone. Proc Natl Acad Sci USA. 1993;90(6):2375-2379. doi:10.1073/pnas.90.6.2375
52. Biesalski HK, Frank J, Beck SC, et al. Biochemical but not clinical vitamin A deficiency results from mutations in the gene for retinol binding protein. American Journal of Clinical Nutrition. 1999;69(5):931-936. doi:10.1093/ajcn/69.5.931
53. Adams D, Gonzalez-Duarte A, O'Riordan WD, et al. Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis. N Engl J Med. 2018;379(1):11-21. doi:10.1056/nejmoa1716153
54. Adams D, Suhr OB, Dyck PJ, et al. Trial design and rationale for APOLLO, a Phase 3, placebo-controlled study of patisiran in patients with hereditary ATTR amyloidosis with polyneuropathy. BMC Neurol. 2017;17(1):1-12. doi:10.1186/s12883-017-0948-5
55. Crooke ST, Baker BF, Kwoh TJ, et al. Integrated safety assessment of 2'-O-Methoxyethyl Chimeric Antisense Oligonucleotides in NonHuman primates and healthy human volunteers. Molecular Therapy. 2016;24(10):1771-1782. doi:10.1038/mt.2016.136
56. Crooke ST, Baker BF, Witztum JL, et al. The Effects of 2'-O-Methoxyethyl Containing Antisense Oligonucleotides on Platelets in Human Clinical Trials. Nucleic Acid Therapeutics. 2017;27(3):121-129. doi:10.1089/nat.2016.0650
57. Crooke ST, Baker BF, Pham NC, et al. The effects of 2'-o-methoxyethyl oligonucleotides on renal function in humans. Nucleic Acid Therapeutics. 2018;28(1):10-22. doi:10.1089/nat.2017.0693