Opicapone, a Novel Catechol-O-methyl Transferase Inhibitor, for Treatment of Parkinson’s Disease “Off” Episodes

Parkinson’s Disease (PD) is a common neurodegenerative disorder and the leading cause of disability. It causes significant morbidity and disability through a plethora of symptoms, including movement disorders, sleep disturbances, and cognitive and psychiatric symptoms. The traditional pathogenesis theory of PD involves the loss of dopaminergic neurons in the substantia nigra (SN). Classically, treatment is pursued with an assortment of medications that are directed at overcoming this deficiency with levodopa being central to most treatment plans. Patients taking levodopa tend to experience “off episodes” with decreasing medication levels, causing large fluctuations in their symptoms. These off episodes are disturbing and a source of morbidity for these patients. Opicapone is a novel, peripherally acting Catechol-O-methyl transferase (COMT) inhibitor that is used as adjunctive therapy to carbidopa/levodopa for treatment and prevention of “off episodes.” It has been approved for use as an adjunct to levodopa since 2016 in Europe and has recently (April 2020) gained FDA approval for use in the USA. By inhibiting COMT, opicapone slows levodopa metabolism and increases its availability. Several clinical studies demonstrated significant improvement in treatment efficacy and reduction in duration of “off episodes.” The main side effect demonstrated was dyskinesia, mostly with the 100mg dose, which is higher than the approved, effective dose of 50mg. Post-marketing surveillance and analysis are required to further elucidate its safety profile and contribute to patient selection. This paper reviews the seminal and latest evidence in the treatment of PD “off episodes” with the novel drug Opicapone, including efficacy, safety, and clinical indications.
1. Kouli A, Torsney KM, Kuan WL. Parkinson’s Disease: Etiology, Neuropathology, and Pathogenesis. In: Parkinson’s Disease: Pathogenesis and Clinical Aspects. Codon Publications; 2018:3-26. https://doi.org/10.15586/codonpublications.parkinsonsdisease.2018.ch1
2. Armstrong MJ, Okun MS. Diagnosis and Treatment of Parkinson Disease: A Review. JAMA. 2020;323(6):548-560. doi:10.1001/jama.2019.22360
3. Marras C, Beck JC, Bower JH, et al. Prevalence of Parkinson’s disease across North America. npj Parkinson’s Disease. 2018;4(1):21. doi:10.1038/s41531-018-0058-0
4. Van Den Eeden SK, Tanner CM, Bernstein AL, et al. Incidence of Parkinson’s disease: variation by age, gender, and race/ethnicity. American Journal of Epidemiology. 2003;157(11):1015-1022. doi:10.1093/aje/kwg068
5. Elbaz A, Bower JH, Maraganore DM, et al. Risk tables for parkinsonism and Parkinson’s disease. Journal of Clinical Epidemiology. 2002;55(1):25-31. doi:10.1016/s0895-4356(01)00425-5
6. Stocchi F. The levodopa wearing-off phenomenon in Parkinson’s disease: Pharmacokinetic considerations. Expert Opinion on Pharmacotherapy. 2006;7(10):1399-1407. doi:10.1517/14656566.7.10.1399
7. Marsden CD, Parkes JD. “ON-OFF” EFFECTS IN PATIENTS WITH PARKINSON’S DISEASE ON CHRONIC LEVODOPA THERAPY. The Lancet. 1976;307(7954):292-296. doi:10.1016/s0140-6736(76)91416-1
8. Chou KL, Stacy M, Simuni T, et al. The spectrum of “off” in Parkinson’s disease: What have we learned over 40 years? Parkinsonism & Related Disorders. 2018;51:9-16. doi:10.1016/j.parkreldis.2018.02.001
9. Witjas T, Kaphan E, Azulay JP, et al. Nonmotor fluctuations in Parkinson’s disease: Frequent and disabling. Neurology. 2002;59(3):408-413. doi:10.1212/wnl.59.3.408
10. Richard IH, Frank S, McDermott MP, et al. The ups and downs of Parkinson disease: A prospective study of mood and anxiety fluctuations. Cognitive and Behavioral Neurology. 2004;17(4):201-207.
11. Kerr C, Lloyd EJ, Kosmas CE, et al. Health-related quality of life in Parkinson’s: impact of ‘off’ time and stated treatment preferences. Qual Life Res. 2016;25(6):1505-1515. doi:10.1007/s11136-015-1187-0
12. Fahn S, Oakes D, Shoulson I, et al. Levodopa and the progression of Parkinson’s Disease. N Engl J Med. 2004;351(24):2498-2508. doi:10.1056/nejmoa033447
13. Ahlskog JE, Muenter MD. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord. 2001;16(3):448-458. doi:10.1002/mds.1090
14. Wan Y, Yuan C, Hou X, et al. Wearing-off Identification in Parkinson’s Disease: The shapd-woq Study. Front Neurol. 2020;11. doi:10.3389/fneur.2020.00116
15. Kostic V, Przedborski S, Flaster E, Sternic N. Early development of levodopa-induced dyskinesias and response fluctuations in young-onset Parkinson’s disease. Neurology. 1991;41(2):202-205. doi:10.1212/wnl.41.2_part_1.202
16. Schrag A, Ben-Shlomo Y, Brown R, Marsden CD, Quinn N. Young-onset Parkinson’s disease revisited—clinical features, natural history, and mortality. Mov Disord. 1998;13(6):885-894. doi:10.1002/mds.870130605
17. Bhidayasiri R, Hattori N, Jeon B, et al. Asian perspectives on the recognition and management of levodopa ‘wearing-off’ in Parkinson’s disease. Expert Review of Neurotherapeutics. 2015;15(11):1285-1297. doi:10.1586/14737175.2015.1088783
18. Lutz SG, Holmes JD, Ready EA, Jenkins ME, Johnson AM. Clinical presentation of anxiety in Parkinson’s disease: A scoping review. OTJR: Occupation, Participation and Health. 2016;36(3):134-147. doi:10.1177/1539449216661714
19. Breen DP, Halliday GM, Lang AE. Gut–brain axis and the spread of α-synuclein pathology: Vagal highway or dead end? Mov Disord. 2019;34(3):307-316. doi:10.1002/mds.27556
20. Ray Dorsey E, Elbaz A, Nichols E, et al. Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology. 2018;17(11):939-953. doi:10.1016/s1474-4422(18)30295-3
21. Pringsheim T, Jette N, Frolkis A, Steeves TDL. The prevalence of Parkinson’s disease: A systematic review and meta-analysis. Mov Disord. 2014;29(13):1583-1590. doi:10.1002/mds.25945
22. Meoni S, Macerollo A, Moro E. Sex differences in movement disorders. Nat Rev Neurol. 2020;16(2):84-96. doi:10.1038/s41582-019-0294-x
23. Factor SA, McDonald WM, Goldstein FC. The role of neurotransmitters in the development of Parkinson’s disease-related psychosis. Eur J Neurol. 2017;24(10):1244-1254. doi:10.1111/ene.13376
24. Berg D, Postuma RB, Adler CH, et al. MDS research criteria for prodromal Parkinson’s disease. Mov Disord. 2015;30(12):1600-1611. doi:10.1002/mds.26431
25. Braak H, Del Tredici K, Rüb U, De Vos RAI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging. 2003;24(2):197-211. doi:10.1016/s0197-4580(02)00065-9
26. Borghammer P, Van Den Berge N. Brain-First versus Gut-First Parkinson’s Disease: A Hypothesis. JPD. 2019;9(s2):S281-S295. doi:10.3233/jpd-191721
27. Li D, Mastaglia FL, Fletcher S, Wilton SD. Progress in the molecular pathogenesis and nucleic acid therapeutics for Parkinson’s disease in the precision medicine era. Med Res Rev. 2020;40(6):2650-2681. doi:10.1002/med.21718
28. Chen ML, Wu RM. LRRK 2 gene mutations in the pathophysiology of the ROCO domain and therapeutic targets for Parkinson’s disease: A review. J Biomed Sci. 2018;25(1). doi:10.1186/s12929-018-0454-0
29. Walden H, Muqit MMK. Ubiquitin and Parkinson’s disease through the looking glass of genetics. Biochemical Journal. 2017;474(9):1439-1451. doi:10.1042/bcj20160498
30. Manecka DL, Vanderperre B, Fon EA, Durcan TM. The neuroprotective role of protein quality control in halting the development of alpha-synuclein pathology. Front Mol Neurosci. 2017;10. doi:10.3389/fnmol.2017.00311
31. Park JS, Davis RL, Sue CM. Mitochondrial Dysfunction in Parkinson’s Disease: New Mechanistic Insights and Therapeutic Perspectives. Curr Neurol Neurosci Rep. 2018;18(5). doi:10.1007/s11910-018-0829-3
32. Xilouri M, Brekk OR, Stefanis L. Autophagy and Alpha-Synuclein: Relevance to Parkinson’s Disease and Related Synucleopathies. Mov Disord. 2016;31(2):178-192. doi:10.1002/mds.26477
33. Gao F, Yang J, Wang D, et al. Mitophagy in Parkinson’s disease: Pathogenic and therapeutic implications. Front Neurol. 2017;8(OCT). doi:10.3389/fneur.2017.00527
34. Ryan BJ, Hoek S, Fon EA, Wade-Martins R. Mitochondrial dysfunction and mitophagy in Parkinson’s: From familial to sporadic disease. Trends in Biochemical Sciences. 2015;40(4):200-210. doi:10.1016/j.tibs.2015.02.003
35. Manzoni C. The LRRK2–macroautophagy axis and its relevance to Parkinson’s disease. Biochemical Society Transactions. 2017;45(1):155-162. doi:10.1042/bst20160265
36. Nguyen TN, Padman BS, Lazarou M. Deciphering the Molecular Signals of PINK1/Parkin Mitophagy. Trends in Cell Biology. 2016;26(10):733-744. doi:10.1016/j.tcb.2016.05.008
37. Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. Journal of Cell Biology. 2008;183(5):795-803. doi:10.1083/jcb.200809125
38. Cacabelos R. Parkinson’s disease: From pathogenesis to pharmacogenomics. IJMS. 2017;18(3):551. doi:10.3390/ijms18030551
39. Caputi V, Giron M. Microbiome-gut-brain axis and toll-like receptors in parkinson’s disease. IJMS. 2018;19(6):1689. doi:10.3390/ijms19061689
40. Chiang HL, Lin CH. Altered Gut Microbiome and Intestinal Pathology in Parkinson’s Disease. JMD. 2019;12(2):67-83. doi:10.14802/jmd.18067
41. Bullich C, Keshavarzian A, Garssen J, Kraneveld A, Perez-Pardo P. Gut Vibes in Parkinson’s Disease: The Microbiota-Gut-Brain Axis. Mov Disord Clin Pract. 2019;6(8):639-651. doi:10.1002/mdc3.12840
42. Devos D, Lebouvier T, Lardeux B, et al. Colonic inflammation in Parkinson’s disease. Neurobiology of Disease. 2013;50(1):42-48. doi:10.1016/j.nbd.2012.09.007
43. Clairembault T, Kamphuis W, Leclair-Visonneau L, et al. Enteric GFAP expression and phosphorylation in Parkinson’s disease. J Neurochem. 2014;130(6):805-815. doi:10.1111/jnc.12742
44. Iwaki H, Blauwendraat C, Leonard HL, et al. Genomewide association study of Parkinson’s disease clinical biomarkers in 12 longitudinal patients’ cohorts. Mov Disord. 2019;34(12):1839-1850. doi:10.1002/mds.27845
45. Noyce AJ, Bestwick JP, Silveira-Moriyama L, et al. Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann Neurol. 2012;72(6):893-901. doi:10.1002/ana.23687
46. Bellou V, Belbasis L, Tzoulaki I, Evangelou E, Ioannidis JPA. Environmental risk factors and Parkinson’s disease: An umbrella review of meta-analyses. Parkinsonism & Related Disorders. 2016;23:1-9. doi:10.1016/j.parkreldis.2015.12.008
47. Dirkx MF, Zach H, Bloem BR, Hallett M, Helmich RC. The nature of postural tremor in Parkinson disease. Neurology. 2018;90(13):e1095-e1102. doi:10.1212/wnl.0000000000005215
48. Marinus J, Zhu K, Marras C, Aarsland D, van Hilten JJ. Risk factors for non-motor symptoms in Parkinson’s disease. The Lancet Neurology. 2018;17(6):559-568. doi:10.1016/s1474-4422(18)30127-3
49. Kalia LV, Lang AE. Parkinson’s disease. The Lancet. 2015;386(9996):896-912. doi:10.1016/s0140-6736(14)61393-3
50. Schapira AHV, Chaudhuri KR, Jenner P. Non-motor features of Parkinson disease. Nat Rev Neurosci. 2017;18(7):435-450. doi:10.1038/nrn.2017.62
51. Hess CW, Hallett M. The Phenomenology of Parkinson’s Disease. Semin Neurol. 2017;37(2):109-117. doi:10.1055/s-0037-1601869
52. Marras C, Lang A. Parkinson’s disease subtypes: Lost in translation? Journal of Neurology, Neurosurgery & Psychiatry. 2013;84(4):409-415. doi:10.1136/jnnp-2012-303455
53. Fereshtehnejad SM, Zeighami Y, Dagher A, Postuma RB. Clinical criteria for subtyping Parkinson’s disease: Biomarkers and longitudinal progression. Brain. 2017;140(7):1959-1976. doi:10.1093/brain/awx118
54. Bjornestad A, Pedersen KF, Tysnes OB, Alves G. Clinical milestones in Parkinson’s disease: A 7-year population-based incident cohort study. Parkinsonism & Related Disorders. 2017;42:28-33. doi:10.1016/j.parkreldis.2017.05.025
55. Shulman LM, Katzel LI, Ivey FM, et al. Randomized clinical trial of 3 types of physical exercise for patients with parkinson disease. JAMA Neurol. 2013;70(2):183-190. doi:10.1001/jamaneurol.2013.646
56. Amara AW, Memon AA. Effects of Exercise on Non-motor Symptoms in Parkinson’s Disease. Clinical Therapeutics. 2018;40(1):8-15. doi:10.1016/j.clinthera.2017.11.004
57. Schenkman M, Moore CG, Kohrt WM, et al. Effect of high-intensity treadmill exercise on motor symptoms in patients with De Novo Parkinson disease a phase 2 randomized clinical trial. JAMA Neurol. 2018;75(2):219-226. doi:10.1001/jamaneurol.2017.3517
58. Ives NJ, Stowe RL, Marro J, et al. Monoamine oxidase type B inhibitors in early Parkinson’s disease: Meta-analysis of 17 randomised trials involving 3525 patients. BMJ. 2004;329(7466):593-596. doi:10.1136/bmj.38184.606169.ae
59. Goetz CG, Koller WC, Poewe W, et al. Amantadine and other antiglutamate agents. Mov Disord. 2002;17(S4):S13-S22. doi:10.1002/mds.5557
60. Schwab RS. Amantadine in Parkinson’s disease. Review of more than two years’ experience. JAMA: The Journal of the American Medical Association. 1972;222(7):792-795. doi:10.1001/jama.222.7.792
61. Cotzias GC, Van Woert MH, Schiffer LM. Aromatic amino acids and modification of parkinsonism. N Engl J Med. 1967;276(7):374-379. doi:10.1056/nejm196702162760703
62. Miyasaki JM, Martin W, Suchowersky O,Weiner WJ, Lang AE. Practice parameter: initiation of treatment for Parkinson’s disease: an evidence-based review: Report of the quality standards subcommittee of the American Academy of Neurology. Neurology. 2002;58(1):11-17. doi:10.1212/wnl.58.1.11
63. Stowe RL, Ives NJ, Clarke C, et al. Dopamine agonist therapy in early Parkinson’s disease. Cochrane Database of Systematic Reviews. 2008;(2). doi:10.1002/14651858.cd006564.pub2
64. Connolly BS, Lang AE. Pharmacological treatment of Parkinson disease: A review. JAMA. 2014;311(16):1670-1683. doi:10.1001/jama.2014.3654
65. Dhall R, Kreitzman DL. Advances in levodopa therapy for Parkinson disease: Review of RYTARY (carbidopa and levodopa) clinical efficacy and safety. Neurology. 2016;86(14):S13-S24. doi:10.1212/wnl.0000000000002510
66. Schrag A. Entacapone in the treatment of Parkinson’s disease. Lancet Neurology. 2005;4(6):366-370. doi:10.1016/s1474-4422(05)70098-3
67. Limousin P, Foltynie T. Long-term outcomes of deep brain stimulation in Parkinson disease. Nat Rev Neurol. 2019;15(4):234-242. doi:10.1038/s41582-019-0145-9
68. Jankovic J, Aguilar LG. Current approaches to the treatment of Parkinson’s disease. NDT. 2008;4(4):743-757. doi:10.2147/ndt.s2006
69. Horn S, Stern MB. The comparative effects of medical therapies for Parkinson’s disease. Neurology. 2004;63(7 Suppl 2):S7-S12. doi:10.1212/wnl.63.7_suppl_2.s7
70. Vollum DI, Parkes JD, Doyle D. Livedo Reticularis during Amantadine Treatment. BMJ. 1971;2(5762):627-628. doi:10.1136/bmj.2.5762.627
71. Dong J, Cui Y, Li S, Le W. Current Pharmaceutical Treatments and Alternative Therapies of Parkinson’s Disease. CN. 2016;14(4):339-355. doi:10.2174/1570159x14666151120123025
72. Moore TJ, Glenmullen J, Mattison DR. Reports of pathological gambling, hypersexuality, and compulsive shopping associated with dopamine receptor agonist drugs. JAMA Intern Med. 2014;174(12):1930. doi:10.1001/jamainternmed.2014.5262
73. Nomoto M, Takeda A, Iwai K, Nishimura A, Hattori N. Effect of Opicapone Tablets on Levodopa and 3-O-Methyldopa Pharmacokinetics in Healthy Japanese Subjects: Phase 1 Study. Clinical Pharmacology in Drug Development. 2020;10(2):180-189. doi:10.1002/cpdd.799
74. Kiss LE, Ferreira HS, Torrão L, et al. Discovery of a long-acting, peripherally selective inhibitor of catechol- O -methyltransferase. J Med Chem. 2010;53(8):3396-3411. doi:10.1021/jm1001524
75. Rascol O, Payoux P, Ory F, Ferreira JJ, Brefel-Courbon C, Montastruc JL. Limitations of current Parkinson’s disease therapy. Ann Neurol. 2003;53(S3):S3-S15. doi:10.1002/ana.10513
76. Lang AE, Lees A. Management of Parkinson’s disease: An evidence-based review. Mov Disord. 2002;17(S4):i-i. doi:10.1002/mds.5554
77. Brooks DJ. Safety and tolerability of COMT inhibitors. Neurology. 2004;62(1 Suppl 1):S39-S46. doi:10.1212/wnl.62.1_suppl_1.s39
78. Dingemanse J, Jorga KM, Schmitt M, et al. Integrated pharmacokinetics and pharmacodynamics of the novel catechol-O-methyltransferase inhibitor tolcapone during first administration to humans. Clin Pharmacol Ther. 1995;57(5):508-517. doi:10.1016/0009-9236(95)90035-7
79. Nissinen H, Kuoppamäki M, Leinonen M, Schapira AH. Early versus delayed initiation of entacapone in levodopa-treated patients with Parkinson’s disease: A long-term, retrospective analysis. European Journal of Neurology. 2009;16(12):1305-1311. doi:10.1111/j.1468-1331.2009.02726.x
80. Kiss LE, Ferreira HS, Torrão L, et al. Discovery of a long-acting, peripherally selective inhibitor of catechol- O -methyltransferase. J Med Chem. 2010;53(8):3396-3411. doi:10.1021/jm1001524
81. Almeida L, Rocha JF, Falcão A, et al. Pharmacokinetics, pharmacodynamics and tolerability of opicapone, a novel catechol-o-methyltransferase inhibitor, in healthy subjects: Prediction of slow enzyme-inhibitor complex dissociation of a short-living and very long-acting inhibitor. Clin Pharmacokinet. 2013;52(2):139-151. doi:10.1007/s40262-012-0024-7
82. Salamon A, Zádori D, Szpisjak L, Klivényi P, Vécsei L. Opicapone for the treatment of Parkinson’s disease: an update. Expert Opinion on Pharmacotherapy. 2019;20(18):2201-2207. doi:10.1080/14656566.2019.1681971
83. FDA, CDER. HIGHLIGHTS OF PRESCRIBING INFORMATION
84. Opicapone | C15H10Cl2N4O6 - PubChem. https://pubchem.ncbi.nlm.nih.gov/compound/Opicapone
85. Keränen T, Gordin A, Karlsson M, et al. Inhibition of soluble catechol-O-methyltransferase and single-dose pharmacokinetics after oral and intravenous administration of entacapone. Eur J Clin Pharmacol. 1994;46(2):151-157. doi:10.1007/bf00199880
86. Ongentys | European Medicines Agency. https://www.ema.europa.eu/en/medicines/human/EPAR/ongentys
87. Rocha JF, Almeida L, Falcão A, et al. Opicapone: a short lived and very long acting novel catechol-O-methyltransferase inhibitor following multiple dose administration in healthy subjects. Br J Clin Pharmacol. 2013;76(5):763-775. doi:10.1111/bcp.12081
88. Ferreira JJ, Rocha JF, Falcão A, et al. Effect of opicapone on levodopa pharmacokinetics, catechol-O-methyltransferase activity and motor fluctuations in patients with Parkinson’s disease. Eur J Neurol. 2015;22(5):815-e56. doi:10.1111/ene.12666
89. Lopes N, Ferreira J, Lees A, Costa R, Disorders ASM. Exploratory efficacy of opicapone in combination with dopamine agonists or MAO-B inhibitors on the treatment of motor fluctuations in Parkinson’s disease. Published online 2015.
90. Almeida L, Rocha JF, Falcão A, et al. Pharmacokinetics, pharmacodynamics and tolerability of opicapone, a novel catechol-o-methyltransferase inhibitor, in healthy subjects: Prediction of slow enzyme-inhibitor complex dissociation of a short-living and very long-acting inhibitor. Clin Pharmacokinet. 2013;52(2):139-151. doi:10.1007/s40262-012-0024-7
91. Almeida L, Rocha JF, Falcão A, et al. Pharmacokinetics, pharmacodynamics and tolerability of opicapone, a novel catechol-O-methyltransferase inhibitor, in healthy subjects: prediction of slow enzyme-inhibitor complex dissociation of a short-living and very long-acting inhibitor. Clin Pharmacokinet. 2013;52(2):139--151.
i:10.1007/s40262-012-0024-7
92. Rocha JF, Santos A, Falcão A, et al. Effect of moderate liver impairment on the pharmacokinetics of opicapone. Eur J Clin Pharmacol. 2014;70(3):279-286. doi:10.1007/s00228-013-1602-9
93. Rocha JF, Santos A, Falcão A, et al. Effect of moderate liver impairment on the pharmacokinetics of opicapone. Eur J Clin Pharmacol. 2014;70(3):279-286. doi:10.1007/s00228-013-1602-9
94. Svetel M, Tomić A, Kresojević N, Kostić V. Pharmacokinetic drug evaluation of opicapone for the treatment of Parkinson’s disease. Expert Opinion on Drug Metabolism & Toxicology. 2018;14(3):353-360. doi:10.1080/17425255.2018.1430138
95. Falcão A, Rocha JF, Santos A, Nunes T, Soares-da-Silva P. Opicapone pharmacokinetics and pharmacodynamics comparison between healthy Japanese and matched white subjects. Clinical Pharmacology in Drug Development. 2016;5(2):150-161. doi:10.1002/cpdd.213
96. Ferreira JJ, Lees A, Rocha JF, Poewe W, Rascol O, Soares-da-Silva P. Opicapone as an adjunct to levodopa in patients with Parkinson’s disease and end-of-dose motor fluctuations: A randomised, double-blind, controlled trial. The Lancet Neurology. 2016;15(2):154-165. doi:10.1016/s1474-4422(15)00336-1
97. Lees AJ, Ferreira J, Rascol O, et al. Opicapone as Adjunct to Levodopa Therapy in Patients With Parkinson Disease and Motor Fluctuations: A Randomized Clinical Trial. JAMA Neurol. 2017;74(2):197-206. doi:10.1001/jamaneurol.2016.4703
98. Ferreira JJ, Lees A, Rocha JF, Poewe W, Rascol O, Soares-da-Silva P. Long-term efficacy of opicapone in fluctuating Parkinson’s disease patients: a pooled analysis of data from two phase 3 clinical trials and their open-label extensions. Eur J Neurol. 2019;26(7):953-960. doi:10.1111/ene.13914
99. Reichmann H, Lees A, Rocha JF, et al. Effectiveness and safety of opicapone in Parkinson’s disease patients with motor fluctuations: The OPTIPARK open-label study. Transl Neurodegener. 2020;9(1):9. doi:10.1186/s40035-020-00187-1
100. Lees AJ, Ferreira J, Rascol O, et al. Opicapone as adjunct to levodopa therapy in patients with Parkinson disease and motor fluctuations a randomized clinical trial. JAMA Neurol. 2017;74(2):197-206. doi:10.1001/jamaneurol.2016.4703
101. Ferreira JJ, Lees A, Rocha JF, Poewe W, Rascol O, Soares-da-Silva P. Long-term efficacy of opicapone in fluctuating Parkinson’s disease patients: a pooled analysis of data from two phase 3 clinical trials and their open-label extensions. Eur J Neurol. 2019;26(7):953-960. doi:10.1111/ene.13914
102. Rocha JF, Ferreira JJ, Falcão A, et al. Effect of 3 single-dose regimens of opicapone on levodopa pharmacokinetics, catechol-O-methyltransferase activity and motor response in patients with Parkinson disease. Clinical Pharmacology in Drug Development. 2016;5(3):232-240. doi:10.1002/cpdd.217
103. Goetz CG, Poewe W, Rascol O, et al. Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: Status and recommendations. Mov Disord. 2004;19(9):1020-1028. doi:10.1002/mds.20213
104. Zhang Y, Huang X. Concerns Regarding Opicapone as Adjunct to Levodopa Therapy. JAMA Neurol. 2017;74(7):872-873. doi:10.1001/jamaneurol.2017.0723
105. Committee for Medicinal Products for Human Use (CHMP). EMA Assessment Report - Ongentys. 2016;44(April).
106. Lees AJ, Ferreira J, Rascol O, et al. Opicapone as adjunct to levodopa therapy in patients with Parkinson disease and motor fluctuations a randomized clinical trial. JAMA Neurol. 2017;74(2):197-206. doi:10.1001/jamaneurol.2016.4703
107. Annus Á, Vécsei L. Spotlight on opicapone as an adjunct to levodopa in parkinson’s disease: design, development and potential place in therapy. DDDT. 2017;11:143-151. doi:10.2147/dddt.s104227
108. Pinto R, l’Hostis P, Patat A, et al. Evaluation of opicapone on cardiac repolarization in a thorough QT/QTc study. Clinical Pharmacology in Drug Development. 2015;4(6):454-462. doi:10.1002/cpdd.188
109. Fabbri M, Ferreira JJ, Lees A, et al. Opicapone for the treatment of Parkinson’s disease: A review of a new licensed medicine. Mov Disord. 2018;33(10):1528-1539. doi:10.1002/mds.27475
110. Opicapone: Drug information - UpToDate. https://www.uptodate.com/contents/opicapone-drug-information?search=opicapone&source=panel_search_result&selectedTitle=1~2&usage_type=panel&kp_tab=drug_general&display_rank=1#F54346825