Health Psychology Research / HPR / Online First / DOI: 10.14440/hpr.0313
RESEARCH ARTICLE

Global Research Trends on the Relationship Between Metabolic Syndrome and Mental Health: A Bibliometric and Visual Analysis (2000–2025)

Xiaoli Xia1,2,3 Yifeng Pan4,5 Huiling Cai1,2,3 Weizhang Zhang1,2,3 Bojun Chen1,2,3,6 Hairong Cai1,2,3*
Show Less
1 Department of Emergency Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510102, China
2 Department of Emergency Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510102, China
3 Department of Emergency Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510102, China
4 Department of Science and Education, The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong 528000, China
5 Department of Science and Education, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong 528000, China
6 Department of Emergency Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, Guangdong 510120, China
Submitted: 24 September 2025 | Revised: 8 December 2025 | Accepted: 12 December 2025 | Published: 14 January 2026
© 2026 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Background

The bidirectional relationship between metabolic syndrome (MetS) and mental health has emerged as a critical public health concern. However, no comprehensive bibliometric analysis has systematically mapped the knowledge structure and evolutionary trajectory of this interdisciplinary field.

Objective

This study aims to examine the relationship between MetS and mental health through a systematic bibliometric analysis, identifying research hotspots and emerging trends.

Methods

Literature from the Web of Science Core Collection (January 2000 to June 2025) was analyzed using VOSviewer, CiteSpace, and the bibliometrix package in R to examine publication trends, collaboration networks, research hotspots, molecular mechanisms, and disease association patterns.

Results

Analysis of 18,647 publications from 138 countries/regions revealed a 45.7-fold increase in annual publications, from 29 articles in 2000 to 1,324 in 2024, with 46.73% published in the past five years. The United States was ranked first in publication volume (26.75%) and network centrality. Keyword analysis identified 16 thematic clusters, with “inflammation” rising from ninth to fourth position across study periods. “Gut microbiota” emerged prominently post-2016, while “COVID-19” became a burst keyword after 2020. Molecular network analysis identified interleukin-6, insulin, and tumor necrosis factor as central hub proteins. Disease co-occurrence analysis demonstrated strong associations between MetS and depression and between insulin resistance and anxiety.

Conclusion

This analysis reveals rapid, accelerating growth in MetS–mental health research, with inflammation and the gut–brain axis as pivotal mechanistic links. Future priorities include elucidating the functional mechanisms of the gut microbiome and developing targeted interventions for shared pathological pathways. These findings provide a framework for identifying research priorities in this evolving field.

Keywords
Metabolic syndrome
Mental health
Bibliometric analysis
Inflammation
Gut–brain axis
Depression
Knowledge mapping
Research trends
Funding
This study was funded by the Guangzhou Municipal Science and Technology Project (Grant no.: 2024A04J3302) and the Project of Administration of Traditional Chinese Medicine of Guangdong Province of China (Grant no.: 20233019; Grant No.20251135). The funder had no role in the design of the study, the collection, analysis, or interpretation of data, the writing of the manuscript, or the decision to publish the results.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Noubiap JJ, Nansseu JR, Lontchi-Yimagou E, et al. Global, regional, and country estimates of met­abolic syndrome burden in children and adolescents in 2020: A systematic review and modelling analy­sis. Lancet Child Adolesc Health. 2022;6(3):158-170. doi: 10.1016/S2352-4642(21)00374-6

 

  1. Chew NW, Ng CH, Tan DJH, et al. The global bur­den of metabolic disease: Data from 2000 to 2019. Cell Metab. 2023;35(3):414-428.e3. doi: 10.1016/j. cmet.2023.02.003

 

  1. Ding C, Wu Y, Chen X, et al. Global, regional, and national burden and attributable risk fac­tors of neurological disorders: The global burden of disease study 1990–2019. Front Public Health. 2022;10:952161. doi: 10.3389/fpubh.2022.952161

 

  1. Saccaro LF, Aimo A, Panichella G, Sentissi O. Shared and unique characteristics of meta­bolic syndrome in psychotic disorders: A review. Front Psychiatry. 2024;15:1343427. doi: 10.3389/ fpsyt.2024.1343427

 

  1. Otokunefor O, Atoe K. The nexus between metabolic syndrome and mental health disor­ders: A review. Open J Med Res. 2025;6(1):15-32. doi: 10.52417/ojmr.v6i1.824

 

  1. Zhang M, Chen J, Yin Z, Wang L, Peng L. The association between depression and metabolic syndrome and its components: A bidirectional two-sample mendelian randomization study. Transl Psychiatry. 2021;11(1):633. doi: 10.1038/ s41398-021-01759-z

 

  1. Ji S, Chen Y, Zhou Y, et al. Association between anxiety and metabolic syndrome: An updated sys­tematic review and meta-analysis. Front Psychiatry. 2023;14:1118836. doi: 10.3389/fpsyt.2023.1118836

 

  1. Vaccarino V, Bremner JD. Stress and cardiovascular disease: An update. Nat Rev Cardiol. 2024;21(9):603- 616. doi: 10.1038/s41569-024-01024-y

 

  1. Firth J, Siddiqi N, Koyanagi AI, et al. The lancet psychiatry commission: A blueprint for protect­ing physical health in people with mental illness. Lancet Psychiatry. 2019;6(8):675-712. doi: 10.1016/ S2215-0366(19)30132-4

 

  1. Leigh SJ, Uhlig F, Wilmes L, et al. The impact of acute and chronic stress on gastrointestinal phys­iology and function: A microbiota-gut-brain axis perspective. J Physiol. 2023;601(20):4491-4538. doi: 10.1113/JP281951

 

  1. Fulop T, Larbi A, Pawelec G, et al. Immunology of aging: The birth of inflammaging. Clin Rev Allergy Immunol. 2023;64(2):109-122. doi: 10.1007/ s12016-021-08899-6

 

  1. Steenblock C, Schwarz PE, Ludwig B, et al. COVID-19 and metabolic disease: Mechanisms and clinical management. Lancet Diabetes Endocrinol. 2021;9(11):786-798. doi: 10.1016/ S2213-8587(21)00244-8

 

  1. Bornmann L, Haunschild R, Mutz R. Growth rates of modern science: A latent piecewise growth curve approach to model publication numbers from established and new literature databases. Humanit Soc Sci Commun. 2021;8(1):224. doi: 10.1057/ s41599-021-00903-w

 

  1. Ferenc K, Sokal-Dembowska A, Helma K, Motyka E, Jarmakiewicz-Czaja S, Filip R. Modulation of the gut microbiota by nutrition and its relation­ship to epigenetics. Int J Mol Sci. 2024;25(2):1228. doi: 10.3390/ijms25021228

 

  1. Yen PC, Chou W, Chien TW, Jen TH. Analyzing fulminant myocarditis research trends and char­acteristics using the follower-leading clustering algorithm (FLCA): A bibliometric study. Medicine (Baltimore). 2023;102(26):e34169. doi: 10.1097/ MD.0000000000034169

 

  1. Bukar UA, Sayeed MS, Razak SFA, Yogarayan S, Amodu OA, Mahmood RAR. A method for analyzing text using VOSviewer. MethodsX. 2023;11:102339. doi: 10.1016/j.mex.2023.102339

 

  1. Yu Y, Shen Y, Liu Y, Wei Y, Rui X, Li B. Knowledge mapping and trends in research on remote sens­ing change detection using CiteSpace analysis. Earth Sci Inf. 2023;16(1):787-801. doi: 10.1007/ s12145-022-00914-4

 

  1. Chen Y, Yang W, Xiong P. Bibliometric anal­ysis of metabolic bariatric surgery and mental health outcomes: A comprehensive overview. Obes Surg. 2025;35:5160-5172. doi: 10.1007/ s11695-025-08331-4

 

  1. Liu Y, Zhang Z, Zhang H, Tian S. Knowledge mapping analysis of sedentary behavior and mental health research: A bibliometric analysis from 2004 to 2024. Medicine (Baltimore). 2025;104(37):e44275. doi: 10.1097/MD.0000000000044275

 

  1. Guo Z, Zhang Z, Li L, et al. Bibliometric anal­ysis of antipsychotic-induced metabolic disorder from 2006 to 2021 based on WoSCC database. Curr Neuropharmacol. 2025;23(4):439-457. doi: 10.2174/ 1570159X23666241016090634

 

  1. Wang YQ, Wu TT, Li Y, Cui SE, Li YS. Global research trends and hotspots in overweight/obese comorbid with depression among children and ado­lescents: A bibliometric analysis. World J Psychiatry. 2024;14(8):1267. doi: 10.5498/wjp.v14.i8.1267

 

  1. Pranckutė R. Web of science (WoS) and scopus: The titans of bibliographic information in today’s academic world. Publications. 2021;9(1):12. doi: 10.3390/publications9010012

 

  1. Khan SS, Coresh J, Pencina MJ, et al. Novel prediction equations for absolute risk assessment of total cardiovascular disease incorporating car­diovascular-kidney-metabolic health: A scientific statement from the american heart association. Circulation. 2023;148(24):1982-2004. doi: 10.1161/ CIR.0000000000001191

 

  1. Heller Pearlshtien D, Pignatti S, Greisman-Ran U, Ben-Dor E. PRISMA sensor evaluation: A case study of mineral mapping performance over makhtesh ramon, israel. Int J Remote Sens. 2021;42(15):5882- 5914. doi: 10.1080/01431161.2021.1931541

 

  1. Liu W. A matter of time: Publication dates in web of science core collection. Scientometrics. 2021;126(1):849-857. doi: 10.1007/ s11192-020-03697-x

 

  1. Kipper LM, Iepsen S, Dal Forno AJ, et al. Scientific mapping to identify competencies required by industry 4.0. Technol Soc. 2021;64:101454. doi: 10.1016/j.techsoc.2020.101454

 

  1. Farooq R. Mapping the field of knowledge man­agement: A bibliometric analysis using R. VINE J Inf Knowl Manag Syst. 2023;53(6):1178-1206. doi: 10.1108/VJIKMS-06-2021-0089

 

  1. Szklarczyk D, Nastou K, Koutrouli M, et al. The STRING database in 2025: Protein networks with directionality of regulation. Nucleic Acids Res. 2025;53(D1):D730-D737. doi: 10.1093/nar/ gkae1113

 

  1. Doncheva NT, Morris JH, Holze H, et al. Cytoscape stringApp 2.0: Analysis and visual­ization of heterogeneous biological networks. J Proteome Res. 2022;22(2):637-646. doi: 10.1021/ acs.jproteome.2c00651

 

  1. Bornmann L, Haunschild R, Mutz R. Growth rates of modern science: A latent piecewise growth curve approach to model publication numbers from established and new literature databases. Humanit Soc Sci Commun. 2021;8(1):224. doi: 10.1057/ s41599-021-00903-w

 

  1. Carollo A, Lim M, Aryadoust V, Esposito G. Interpersonal synchrony in the context of car­egiver-child interactions: A document co-citation analysis. Front Psychol. 2021;12:701824. doi: 10.3389/fpsyg.2021.701824

 

  1. Giannoulidis A, Gounaris A, Paparrizos J. Burst: Rendering clustering techniques suitable for evolving streams. Proc VLDB Endow. 2025;18(11):4054-4063. doi: 10.14778/3749646.3749675

 

  1. Azarian M, Yu H, Shiferaw AT, Stevik TK. Do we perform systematic literature review right? A scientific mapping and methodological assess­ment. Logistics. 2023;7(4):89. doi: 10.3390/ logistics7040089

 

  1. Sherman BT, Hao M, Qiu J, et al. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;50(W1):W216-W221. doi: 10.1093/nar/gkac194

 

  1. Tomaszewski R. Visibility, impact, and applica­tions of bibliometric software tools through citation analysis. Scientometrics. 2023;128(7):4007-4028. doi: 10.1007/s11192-023-04725-2

 

  1. Saklayen MG. The global epidemic of the meta­bolic syndrome. Curr Hypertens Rep. 2018;20(2):12. doi: 10.1007/s11906-018-0812-z

 

  1. Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2017;114(12):1752-1761. doi: 10.1172/JCI21625

 

  1. Brauer M, Roth GA, Aravkin AY, et al. Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: A systematic analysis for the global burden of disease study 2021. Lancet. 2024;403(10440):2162-2203. doi: 10.1016/ S0140-6736(24)00933-4

 

  1. GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and territo­ries, 1990–2019: A systematic analysis for the global burden of disease study 2019. Lancet Psychiatry. 2022;9(2):137-150. doi: 10.1016/ S2215-0366(21)00395-3

 

  1. Wilson OW, Garra S, Bopp M, Bopp CM. Incorporating the american college of cardiology/ american heart association hypertension diagnos­tic criteria into metabolic syndrome criteria will significantly increase the prevalence of metabolic syndrome among college students. J Hum Hypertens. 2021;35(6):517-523. doi: 10.1038/s41371-020-0369-6

 

  1. Tain YL, Hsu CN. Maternal polyphenols and offspring cardiovascular-kidney-metabolic health. Nutrients. 2024;16(18):3168. doi: 10.3390/ nu16183168

 

  1. Chen C, Wang J, Pan D, et al. Applications of multi-omics analysis in human diseases. MedComm (2020). 2023;4(4):e315. doi: 10.1002/mco2.315

 

  1. Chen Y, Zhang X, Chen S, et al. Bibliometric analysis of mental health during the COVID-19 pandemic. Asian J Psychiatry. 2021;65:102846. doi: 10.1016/j.ajp.2021.102846

 

  1. Richardson RR, Crawford DC, Ngai J, Beckel- Mitchener AC. Advancing scientific excellence through inclusivity in the NIH BRAIN initiative. Neuron. 2021;109(21):3361-3364. doi: 10.1016/j. neuron.2021.10.021

 

  1. Chen Y, Zhang Q, Ma J, Yu Y. Mapping research trends of insulin resistance in polycystic ovary syn­drome from 2017 to 2021: A bibliometric analysis. Front Endocrinol. 2022;13:963213. doi: 10.3389/ fendo.2022.963213

 

  1. Paucar-Caceres A, Vílchez-Román C, Quispe- Prieto S. Health literacy concepts, themes, and research trends globally and in latin america and the caribbean: A bibliometric review. Int J Environ Res Public Health. 2023;20(22):7084. doi: 10.3390/ ijerph20227084

 

  1. Carrera-Bastos P, Bottino B, Stults- Kolehmainen M, et al. Inflammation and depres­sion: An evolutionary framework for the role of physical activity and exercise. Front Psychol. 2025;16:1554062. doi: 10.3389/fpsyg.2025.1554062

 

  1. McIntyre RS. The co-occurrence of depres­sion and obesity: Implications for clinical practice and the discovery of targeted and precise mecha­nistically informed therapeutics. J Clin Psychiatry. 2024;85(2):55135. doi: 10.4088/JCP.24com15322

 

  1. Sorboni SG, Moghaddam HS, Jafarzadeh- Esfehani R, Soleimanpour S. A comprehensive review on the role of the gut microbiome in human neurological disorders. Clin Microbiol Rev. 2022;35(1):e00338-20. doi: 10.1128/CMR.00338-20

 

  1. de Lima EP, Moretti RC Jr., Torres Pomini K, et al. Glycolipid metabolic disorders, metainflamma­tion, oxidative stress, and cardiovascular diseases: Unraveling pathways. Biology. 2024;13(7):519. doi: 10.3390/biology13070519

 

  1. Taheri R, Mokhtari Y, Yousefi AM, Bashash D. The PI3K/akt signaling axis and type 2 diabe­tes mellitus (T2DM): From mechanistic insights into possible therapeutic targets. Cell Biol Int. 2024;48(8):1049-1068. doi: 10.1002/cbin.12189

 

  1. Mitchell CS, Begg DP. The regulation of food intake by insulin in the central nervous system. J Neuroendocrinol. 2021;33(4):e12952. doi: 10.1111/ jne.12952

 

  1. Bodnaruc AM, Roberge M, Giroux I, Aguer C. The bidirectional link between major depressive disorder and type 2 diabetes: The role of inflamma­tion. Endocrines. 2024;5(4):478-500. doi: 10.3390/ endocrines5040035

 

  1. Yates BA. Tryptophan metabolism, exercise and depression. Nat Rev Endocrinol. 2025;21(4):201- 201. doi: 10.1038/s41574-025-01090-3

 

  1. Hajam YA, Rani R, Ganie SY, et al. Oxidative stress in human pathology and aging: Molecular mechanisms and perspectives. Cells. 2022;11(3):552. doi: 10.3390/cells11030552

 

  1. Watson KT, Simard JF, Henderson VW, et al. Incident major depressive disorder predicted by three measures of insulin resistance: A dutch cohort study. Am J Psychiatry. 2021;178(10):914-920. doi: 10.1176/appi.ajp.2021.20101479

 

  1. Singh VK, Singh P, Karmakar M, Leta J, Mayr P. The journal coverage of web of science, scopus and dimensions: A comparative anal­ysis. Scientometrics. 2021;126(6):5113-5142. doi: 10.1007/s11192-021-03948-5

 

  1. Asubiaro T, Onaolapo S, Mills D. Regional disparities in web of science and scopus journal coverage. Scientometrics. 2024;129(3):1469-1491. doi: 10.1007/s11192-024-04948-x

 

  1. Mustafa G, Rauf A, Ahmed B, Afzal MT, Akhunzada A, Alharthi SZ. Comprehensive evaluation of publi­cation and citation metrics for quantifying scholarly influence. IEEE Access. 2023;11:65759-65774. doi: 10.1109/ACCESS.2023.3290917

 

  1. Chen H, Tsang Y, Wu C. When text mining meets science mapping in the bibliometric anal­ysis: A review and future opportunities. Int J Eng Bus Manage. 2023;15:18479790231222349. doi: 10.1177/18479790231222349

 

  1. De Vos WM, Tilg H, Van Hul M, Cani PD. Gut microbiome and health: Mechanistic insights. Gut. 2022;71(5):1020-1032. doi: 10.1136/gutjnl-2021-326789

 

  1. Zhang Y, Wang J, Ye Y, et al. Peripheral cytokine levels across psychiatric disorders: A systematic review and network meta-analysis. Prog Neuro- Psychopharmacol Biol Psychiatry. 2023;125:110740. doi: 10.1016/j.pnpbp.2023.110740

 

  1. Alanazi A. Using machine learning for health­care challenges and opportunities. Inf Med Unlocked. 2022;30:100924. doi: 10.1016/j.imu.2022.100924

 

  1. Francis G, Thunell E. Reversing bonferroni. Psychon Bull Rev. 2021;28(3):788-794. doi: 10.3758/ s13423-020-01855-z
Share
Back to top
Health Psychology Research, Electronic ISSN: 2420-8124 Published by Health Psychology Research