Health Psychology Research / HPR / Volume 12 / Issue 1 / DOI: 10.52965/​001c.125273
Cite this article
3
Download
108
Citations
32
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
GENERAL

The Role of Dopamine in Impulsivity and Substance Abuse: A   Narrative Review

Connor J Plaisance1 Lloyd F Ledet III2 Nicholas J Slusher2 Charles P Daniel2 Zachary Lee3 Bradley Dorius3 Sonnah Barrie3 Tomasina Q Parker-Actlis3 Shahab Ahmadzadeh3 Sahar Shekoohi3 Alan D Kaye3,4
Show Less
1 Schoolf of Medicine, Louisiana State University Health Sciences Center Shreveport
2 School of Medicine, Louisiana State University Health Sciences Center Shreveport
3 Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport
4 Department of Pharmacology, Toxicology, and Neurosciences, Louisiana State University Health Sciences Center Shreveport
Submitted: 25 April 2024 | Accepted: 26 April 2024 | Published: 11 November 2024
© 2024 by the Author(s). Licensee Health Psychology Research, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Substance use disorder (SUD), based on the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), is defined by symptoms caused by utilizing a substance that a person continues taking despite its negative effects. Impulsive decision making is commonly defined as a reduced ability to choose a delayed large reward instead of a small immediate reward. Dopamine has been implicated as a prominent neurotransmitter implicated in the development and pattern of addiction and impulsivity, especially in regard to substance use disorder. Discovery as a key player in the development of addiction dates to the 1950s, with a study performed by Olds and Milner on rats placed in a Skinner box. Their original discovery is part of the beginning of what would become the search into the main mechanistic source of addiction, and how exactly it works at a cellular, physiological, and psychological level. The dopaminergic pathways of our brains are well-studied. It is well established that most of the dopaminergic neurons of the brain are located in the ventral mid-brain and consists of four main pathways: mesocortical, mesolimbic, nigrostriatal, and tuberoinfundibular pathways. Dopamine acts various receptors, with dopamine (D) receptors 1, 2, and 3 playing a major role in motor function and receptors D1 and D2 playing a major role in reward. There are additional studies warranted, especially finding ways to manipulate the dopaminergic system to treat addiction disorders of all varieties. The focus of the present investigation is to delve into the current literature regarding dopamine and its clinical implications in substance use disorder and impulsive behavior.

Keywords
Dopamine
Substance
Abuse
Impulsivity
Addiction
References

1. Olds J, Milner P. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. Journal of Comparative and Physiological Psychology. 1954;47(6):419-427. doi:10.1037/h0058775

2. Wise RA, Bozarth MA. A psychomotor stimulant theory of addiction. Psychological Review.1987;94(4):469-492. doi:10.1037/0033-295X.94.4.469

3. Johnson TP, Booth AL, Johnson P. Physician beliefs about substance misuse and its treatment: findings from a U.S. survey of primary care practitioners. Subst Use Misuse.2005;40(8):1071-1084. doi:10.1081/JA-200030800

4. Clay S. A Review of Addiction. Postgrad Med.2008;120(2). doi:10.3810/pgm.2008.07.1802

5. Wise RA, Robble MA. Dopamine and Addiction. Annu Rev Psychol.2020;71(1):79-106. doi:10.1146/annurev-psych-010418-103337

6. Baik JH. Dopamine Signaling in reward-related behaviors. Front Neural Circuits.2013;7. doi:10.3389/fncir.2013.00152

7. Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG. Dopamine: Functions, Signaling, and Association with Neurological Diseases. Cell Mol Neurobiol. 2019;39(1):31-59. doi:10.1007/s10571-018-0632-3

8. Ayano G. Dopamine: Receptors, Functions, Synthesis, Pathways, Locations and Mental Disorders: Review of Literatures. J Ment Disord Treat.2016;2(2). doi:10.4172/2471-271X.1000120

9. Pivonello R, Ferone D, Lombardi G, Colao A, Lamberts SWJ, Hofland LJ. Novel insights in dopamine receptor physiology. Eur J Endocrinol.2007;156(suppl_1):S13-S21. doi:10.1530/eje.1.02353

10. Beaulieu JM, Gainetdinov RR. The Physiology, Signaling, and Pharmacology of Dopamine Receptors. Sibley DR, ed. Pharmacol Rev.2011;63(1):182-217. doi:10.1124/pr.110.002642

11. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine Receptors: From Structure to Function. Physiological Reviews. 1998;78(1):189-225. doi:10.1152/physrev.1998.78.1.189

12. Kim S, Kwok S, Mayes LC, Potenza MN, Rutherford HJV, Strathearn L. Early adverse experience and substance addiction: dopamine, oxytocin, and glucocorticoid pathways. Annals of the New York Academy of Sciences.2017;1394(1):74-91. doi:10.1111/nyas.13140

13. Ruiz-Tejada A, Neisewander J, Katsanos CS. Regulation of Voluntary Physical Activity Behavior: A Review of Evidence Involving Dopaminergic Pathways in the Brain. Brain Sciences.2022;12(3):333. doi:10.3390/brainsci12030333

14. Christine CW, Aminoff MJ. Clinical differentiation of parkinsonian syndromes: Prognostic and therapeutic relevance. The American Journal of Medicine.2004;117(6):412-419. doi:10.1016/j.amjmed.2004.03.032

15. Bjorklund A, Dunnett SB. Dopamine neuron systems in the brain: an update. Trends in Neurosciences.2007;30(5):194-202. doi:10.1016/j.tins.2007.03.006

16. van Gaalen MM, van Koten R, Schoffelmeer ANM, Vanderschuren LJMJ. Critical Involvement of Dopaminergic Neurotransmission in Impulsive Decision Making. Biological Psychiatry.2006;60(1):66-73. doi:10.1016/j.biopsych.2005.06.005

17. Bickel WK, Koffarnus MN, Moody L, Wilson AG. The behavioral- and neuro-economic process of temporal discounting: A candidate behavioral marker of addiction. Neuropharmacology.2014;76:518-527. doi:10.1016/j.neuropharm.2013.06.013

18. Mechler K, Banaschewski T, Hohmann S, Hage A. Evidence-based pharmacological treatment options for ADHD in children and adolescents. Pharmacol Ther.2022;230:107940. doi:10.1016/j.pharmthera.2021.107940

19. Luethi D, Liechti ME. Designer drugs: mechanism of action and adverse effects. Arch Toxicol.2020;94(4):1085-1133. doi:10.1007/s00204-020-02693-7

20. Daood M, Peled-Avron L, Ben-Hayun R, et al. Fronto-striatal connectivity patterns account for the impact of methylphenidate on choice impulsivity among healthy adults. Neuropharmacology.2022;216:109190. doi:10.1016/j.neuropharm.2022.109190

21. Weber SC, Beck-Schimmer B, Kajdi ME, Müller D, Tobler PN, Quednow BB. Dopamine D2/3- and μ-opioid receptor antagonists reduce cue-induced responding and reward impulsivity in humans. Transl Psychiatry.2016;6(7):e850. doi:10.1038/tp.2016.113

22. Voon V, Napier TC, Frank MJ, et al. Impulse control disorders and levodopa-induced dyskinesias in Parkinson's disease: an update. The Lancet Neurology.2017;16(3):238-250. doi:10.1016/S1474-4422(17)30004-2

23. Rawji V, Rocchi L, Foltynie T, Rothwell JC, Jahanshahi M. Ropinirole, a dopamine agonist with high D3 affinity, reduces proactive inhibition: A double-blind, placebo-controlled study in healthy adults. Neuropharmacology.2020;179:108278. doi:10.1016/j.neuropharm.2020.108278

24. Grant JE, Odlaug BL, Chamberlain SR, Hampshire A, Schreiber LRN, Kim SW. A proof of concept study of tolcapone for pathological gambling: Relationships with COMT genotype and brain activation. European Neuropsychopharmacology.2013;23(11):1587-1596. doi:10.1016/j.euroneuro.2013.07.008

25. Newton TF, Haile CN, Mahoney JJ, et al. Dopamine D3 receptor-preferring agonist enhances the subjective effects of cocaine in humans. Psychiatry Res.2015;230(1):44-49. doi:10.1016/j.psychres.2015.07.073

26. Corvol JC, Artaud F, Cormier-Dequaire F, et al. Longitudinal analysis of impulse control disorders in Parkinson disease. Neurology.2018;91(3):e189-e201. doi:10.1212/WNL.0000000000005816

27. Smith KM, Xie SX, Weintraub D. Incident impulse control disorder symptoms and dopamine transporter imaging in Parkinson disease. J Neurol Neurosurg Psychiatry.2016;87(8):864-870. doi:10.1136/innp-2015-311827

28. Mosley PE, Paliwal S, Robinson K, et al. The structural connectivity of subthalamic deep brain stimulation correlates with impulsivity in Parkinson's disease. Brain.2020;143(7):2235-2254. doi:10.1093/brain/awaa148

29. Pham U, Skogseid IM, Pripp AH, Boen E, Toft M. Impulsivity in Parkinson's disease patients treated with subthalamic nucleus deep brain stimulation-An exploratory study. PLoS One.2021;16(3):e0248568. doi:10.1371/journal.pone.0248568

30. Kim A, Kim YE, Kim HJ, et al. A 7-year observation of the effect of subthalamic deep brain stimulation on impulse control disorder in patients with Parkinson's disease. Parkinsonism Relat Disord.2018;56:3-8. doi:10.1016/j.parkreldis.2018.07.010

31. Volkow ND, Wise RA, Baler R. The dopamine motive system: implications for drug and food addiction. Nat Rev Neurosci.2017;18(12):741-752. doi:10.1038/nrn.2017.130

32. Volkow ND, Michaelides M, Baler R. The Neuroscience of Drug Reward and Addiction. Physiological Reviews.2019;99(4):2115-2140. doi:10.1152/physrev.00014.2018

33. Botticelli L, Micioni Di Bonaventura E, Del Bello F, et al. Underlying Susceptibility to Eating Disorders and Drug Abuse: Genetic and Pharmacological Aspects of Dopamine D4 Receptors. Nutrients.2020;12(8):2288. doi:10.3390/nu12082288

34. Becker-Krail DD, Walker WH, Nelson RJ. The Ventral Tegmental Area and Nucleus Accumbens as Circadian Oscillators: Implications for Drug Abuse and Substance Use Disorders. Front Physiol.2022;13:886704. doi:10.3389/fphys.2022.886704

35. Solinas M, Belujon P, Fernagut PO, Jaber M, Thiriet N. Dopamine and addiction: what have we learned from 40 years of research. J Neural Transm.2019;126(4):481-516. doi:10.1007/s00702-018-1957-2

36. You ZB, Wang B, Liu QR, Wu Y, Otvos L, Wise RA. Reciprocal Inhibitory Interactions Between the Reward-Related Effects of Leptin and Cocaine. Neuropsychopharmacol.2016;41(4):1024-1033. doi:10.1038/npp.2015.230

37. Soares-Cunha C, Coimbra B, David-Pereira A, et al. Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation. Nat Commun.2016;7(1):11829. doi:10.1038/ncomms11829

38. Simpson EH, Gallo EF, Balsam PD, Javitch JA, Kellendonk C. How changes in dopamine D2 receptor levels alter striatal circuit function and motivation. Mol Psychiatry.2022;27(1):436-444. doi:10.1038/s41380-021-01253-4

39. Salamone JD, Correa M, Farrar A, Mingote SM. Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology.2007;191(3):461-482. doi:10.1007/s00213-006-0668-9

40. Vachez Y, Carcenac C, Magnard R, et al. Subthalamic Nucleus Stimulation Impairs Motivation: Implication for Apathy in Parkinson's Disease. Movement Disorders.2020;35(4):616-628. doi:10.1002/mds.27953

41. Klem L, Nielsen MM, Gestsdottir SB, Frandsen SL, Prichardt S, Andreasen JT. Assessing attention and impulsivity in the variable stimulus duration and variable intertrial interval rodent continuous performance test schedules using dopamine receptor antagonists in female C57BL/6JRj mice. Psychopharmacology.2023;240(8):1651-1666. doi:10.1007/s00213-023-06387-7

42. Wise RA, Robble MA. Dopamine and Addiction. Annu Rev Psychol.2020;71(1):79-106. doi:10.1146/annurev-psych-010418-103337

Conflict of interest
The authors declare they have no competing interests.
Share
Back to top
Health Psychology Research, Electronic ISSN: 2420-8124 Published by Health Psychology Research